20 research outputs found

    Striatal vs extrastriatal dopamine D2 receptors in antipsychotic response - a double-blind PET study in schizophrenia

    Get PDF
    Blockade of dopamine D2 receptors remains a common feature of all antipsychotics. It has been hypothesized that the extrastriatal (cortical, thalamic) dopamine D2 receptors may be more critical to antipsychotic response than the striatal dopamine D2 receptors. This is the first double-blind controlled study to examine the relationship between striatal and extrastriatal D2 occupancy and clinical effects. Fourteen patients with recent onset psychosis were assigned to low or high doses of risperidone (1 mg vs 4 mg/day) or olanzapine (2.5 mg vs 15 mg/day) in order to achieve a broad range of D2 occupancy levels across subjects. Clinical response, side effects, striatal ([11C]-raclopride-positron emission tomography (PET)), and extrastriatal ([11C]-FLB 457-PET) D2 receptors were evaluated after treatment. The measured D2 occupancies ranged from 50 to 92% in striatal and 4 to 95% in the different extrastriatal (frontal, temporal, thalamic) regions. Striatal and extrastriatal occupancies were correlated with dose, drug plasma levels, and with each other. Striatal D2 occupancy predicted response in positive psychotic symptoms (r=0.62, p=0.01), but not for negative symptoms (r=0.2, p=0.5). Extrastriatal D2 occupancy did not predict response in positive or negative symptoms. The two subjects who experienced motor side effects had the highest striatal occupancies in the cohort. Striatal D2 blockade predicted antipsychotic response better than frontal, temporal, and thalamic occupancy. These results, when combined with the preclinical data implicating the mesolimbic striatum in antipsychotic response, suggest that dopamine D2 blockade within specific regions of the striatum may be most critical for ameliorating psychosis in schizophrenia.peer-reviewe

    Association between two distinct executive tasks in schizophrenia: a functional transcranial Doppler sonography study

    Get PDF
    BACKGROUND: Schizophrenia is a severe mental disorder involving impairments in executive functioning, which are important cognitive processes that can be assessed by planning tasks such as the Stockings of Cambridge (SOC), and tasks of rule learning/abstraction such as the Wisconsin Card Sorting Test (WCST). We undertook this study to investigate the association between performance during separate phases of SOC and WCST, including mean cerebral blood flow velocity (MFV) measurements in chronic schizophrenia. METHODS: Functional transcranial Doppler sonography (fTCD) was used to assess bilateral MFV changes in the middle (MCA) and anterior (ACA) cerebral arteries. Twenty-two patients with chronic schizophrenia and 20 healthy subjects with similar sociodemographic characteristics performed SOC and WCST during fTCD measurements of the MCA and the ACA. The SOC was varied in terms of easy and difficult problems, and also in terms of separate phases, namely mental planning and movement execution. The WCST performance was assessed separately for maintaining set and set shifting. This allowed us to examine the impact of problem difficulty and the impact of separate phases of a planning task on distinct intervals of WCST. Simultaneous registration of MFV was carried out to investigate the linkage of brain perfusion during the tasks. RESULTS: In patients, slowing of movement execution during easy problems (SOC) was associated with slowing during maintaining set (WCST) (P < 0.01). In healthy subjects, faster planning and movement execution during predominantly difficult problems were associated with increased performance of WCST during set shifting (P < 0.01). In the MCA, patients showed a significant and positive correlation of MFV between movement execution and WCST (P < 0.01). CONCLUSION: The results of this study demonstrate performance and brain perfusion abnormalities in the association pattern of two different tasks of executive functioning in schizophrenia, and they support the notion that executive functions have a pathological functional correlate predominantly in the lateral hemispheres of the brain. This study also underpins the scientific potential of fTCD in assessing brain perfusion in patients with schizophrenia

    The effects of amisulpride on five dimensions of psychopathology in patients with schizophrenia: a prospective open- label study

    Get PDF
    BACKGROUND: The efficacy of antipsychotics can be evaluated using the dimensional models of schizophrenic symptoms. The D(2)/D(3)-selective antagonist amisulpride has shown similar efficacy and tolerability to other atypical antipsychotics. The aim of the present study was to determine the efficacy of amisulpride on the dimensional model of schizophrenic symptoms and tolerability in latin schizophrenic patients. METHOD: Eighty schizophrenic patients were enrolled and 70 completed a prospective open-label 3-month study with amisulpride. The schizophrenic symptoms, psychosocial functioning and side-effects were evaluated with standardized scales. RESULTS: The patients showed significant improvement in the five dimensions evaluated. Amisulpride (median final dose 357.1 mg/d) was well-tolerated without treatment-emergent extrapyramidal side-effects. CONCLUSION: Amisulpride showed efficacy on different psychopathological dimensions and was well tolerated, leading to consider this drug a first line choice for the treatment of schizophrenia

    Translational Modeling in Schizophrenia:Predicting Human Dopamine D2 Receptor Occupancy

    Get PDF
    OBJECTIVES: To assess the ability of a previously developed hybrid physiology-based pharmacokinetic-pharmacodynamic (PBPKPD) model in rats to predict the dopamine D2 receptor occupancy (D2RO) in human striatum following administration of antipsychotic drugs.METHODS: A hybrid PBPKPD model, previously developed using information on plasma concentrations, brain exposure and D2RO in rats, was used as the basis for the prediction of D2RO in human. The rat pharmacokinetic and brain physiology parameters were substituted with human population pharmacokinetic parameters and human physiological information. To predict the passive transport across the human blood-brain barrier, apparent permeability values were scaled based on rat and human brain endothelial surface area. Active efflux clearance in brain was scaled from rat to human using both human brain endothelial surface area and MDR1 expression. Binding constants at the D2 receptor were scaled based on the differences between in vitro and in vivo systems of the same species. The predictive power of this physiology-based approach was determined by comparing the D2RO predictions with the observed human D2RO of six antipsychotics at clinically relevant doses.RESULTS: Predicted human D2RO was in good agreement with clinically observed D2RO for five antipsychotics. Models using in vitro information predicted human D2RO well for most of the compounds evaluated in this analysis. However, human D2RO was under-predicted for haloperidol.CONCLUSIONS: The rat hybrid PBPKPD model structure, integrated with in vitro information and human pharmacokinetic and physiological information, constitutes a scientific basis to predict the time course of D2RO in man.</p

    Role of Dopamine D2 Receptors in Human Reinforcement Learning

    Get PDF
    Influential neurocomputational models emphasize dopamine (DA) as an electrophysiological and neurochemical correlate of reinforcement learning. However, evidence of a specific causal role of DA receptors in learning has been less forthcoming, especially in humans. Here we combine, in a between-subjects design, administration of a high dose of the selective DA D2/3-receptor antagonist sulpiride with genetic analysis of the DA D2 receptor in a behavioral study of reinforcement learning in a sample of 78 healthy male volunteers. In contrast to predictions of prevailing models emphasizing DA's pivotal role in learning via prediction errors, we found that sulpiride did not disrupt learning, but rather induced profound impairments in choice performance. The disruption was selective for stimuli indicating reward, while loss avoidance performance was unaffected. Effects were driven by volunteers with higher serum levels of the drug, and in those with genetically-determined lower density of striatal DA D2 receptors. This is the clearest demonstration to date for a causal modulatory role of the DA D2 receptor in choice performance that might be distinct from learning. Our findings challenge current reward prediction error models of reinforcement learning, and suggest that classical animal models emphasizing a role of postsynaptic DA D2 receptors in motivational aspects of reinforcement learning may apply to humans as well.Neuropsychopharmacology accepted article peview online, 09 April 2014; doi:10.1038/npp.2014.84

    Authors' reply

    No full text
    corecore